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Magnetohydrodynamic pipe flow in a duct with sector 
cross section 

Shang-wu Qiant and Guo-qing Guf 
t Department of Physics, Peking University, Beijing, China 
$ Department of Physics, Fudan University, Shanghai, China 
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Abstract. In this paper we use the Green function method to solve the problem of steady 
one-dimensional flow of an incompressible, viscous, electrically conducting fluid through 
a pipe with sector cross section, in the presence of an applied transverse uniform magnetic 
field. We obtain an analytic solution in this case which other methods have not given before. 

1. Introduction 

Magnetohydrodynamic ( M H D )  pipe flow problems have been solved exactly only in a 
few cases thus far, for example, Hartmann (1937), Shercliff (1953) and Gold (1962). 
Although the Green function is widely used in solving electrostatic problems, and 
recently in dealing with condensed matter problems, there appears to have been almost 
no attempt to solve M H D  pipe flow problems by this powerful method. In § 2 we use 
this method to obtain the same analytic solution as that given by other methods in the 
case of a circular cross section. In § 3 we use it to obtain an analytic solution in the 
case of a sector cross section, which other methods have not given before. 

2. Case of circular cross section 

This problem has already been solved by Gold (1962) using Fourier analysis, but now 
we shall use the Green function method to solve the same problem. The two basic 
equations for any general M H D  duct flow (incompressible, steady) with circular type 
section (circle, circular ring, sector) and uniform applied transverse field are 

V2f - a 2 f  = 0 (1) 
v2g - a2g = 0 (2) 

where a = i M ,  M = p H , , a ( u / ~ ) ” ’  is the Hartmann number and 

g(p ,B)=exp(-apcose)  
2 a  (4) 

0305-4470/87/051087 + 07$02.50 @ 1987 IOP Publishing Ltd 1087 



1088 Shang-wu Qian and Guo-qing G u  

where R, = 41rupv,,a is the magnetic Reynolds number, K = K,a2/  uoq, K ,  = ap/az = 
constant and the non-dimensional variables v = v , / v o ,  H = Hz/ H,, p = r / a ,  where U,, 
is some characteristic velocity, a is the radius of the pipe, Ho is the uniform applied 
transverse field, p the fluid density, p the pressure, q the viscosity, p the permeability, 

the velocity, and U the electrical conductivity. 
Now, we shall find the Green function for the following equation: 

The 8 delta 

We expand 

47T - - -- -p f )s (e -  eo. 
P 

function can be written in terms of orthonormal functions: 

( 6 )  
1 -  s(e - e’) =- 1 exp[im(e - e’)]. 

2 n  m=--T 

the Green function in a similar fashion: 

1 “  
27T m=-= 

G(x,d)=-  exp[im(O-e’)]g,(p, p’). (7) 

Substitution of ( 6 )  and (7) into ( 5 )  leads to an equation for the radial Green function 
gm(P7 P ’ ) :  

For p # p’ this is just the differential equation for the modified Bessel functions, I,(ap) 
and K,(ap). Thus its solution can be written as 

where B ,  = - K , ( a ) / I , ( a ) .  By the symmetry of g,,,(p,p’) in p and p’, g , ( p , p ’ )  
becomes 

gm(p, ~ ’ ) = A m l m ( a p ~ ) [ K m ( a p > ) +  BmIm(ap>)l (9) 

where p<(p>)  is the smaller (larger) of p and p’. To determine the constant A,,, we 
must consider the effect of the delta function in (8). If we multiply both sides by p 
and integrate over the interval from p = p l  = p‘-  E to p = p: = p’+ E ,  where E is a very 
small positive number, we obtain 

Thus there is a discontinuity in slope at p = p‘, where I +  means evaluated at p = pL = 
p’* E .  By direct calculation of dg,/dpl, and dg,/dpl- from (9), we readily obtain 

so that 
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The required Green function is therefore 

G(x, x’) = 2 

On the boundary, p < p ‘ ,  p ‘  = 1, 

exp[im(O- 8 ’ ) l I m ( a p < ) [ K m ( a p > ) +  B m I m ( a p > ) I .  
m = - m  

a 
G(x ,x ’ )=2  cxp[im(f3-e‘)]lm(ap)[Km(ap’)+B,lm(ap’)]. 

m = - a  

Because of 

therefore 

The general solution to (1) with specified values of f(x‘) on the boundary surface is 

On the boundary surface, since there is no fluid slip at the wall U = 0. Furthermore, 
the assumption of non-conducting walls implies that H = 0 and therefore, from (3) 
and (4), we obtain the following non-homogeneous boundary conditions on f and g: 

f ( l , e ) = - ( K / 2 a ) c o s e e x p ( a ~ 0 s e )  

g(1, e ) = ( K / 2 a ) c o s  eexp(-a  COS e). 
Substituting (16) and (18) in (17), we obtain 

de‘ ( -K/2a)  COS B’exp(a COS e’) 

1 “   C COS me cos mB’+sin me sin me‘) 
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In the last step of (20) we have used the following relation for the modified Bessel 
function I,: 

exp(z COS 0)  COS me COS e d e  

which is obtained from differentiation of the following integral expression of I,,,: 

exp(z COS e)  cos me de. (22) 

Similarly, by the above-mentioned method we can readily obtain the g(p ,  0 )  function: 

(20) and (23) give the same functions u(p,  0)  and H(p, 0)  as that given by Gold's paper. 

3. The case of a sector cross section 

The cross section of the duct is shown in figure 1. The basic equations (1) and (2) 
remain the same, but the boundary conditions (18) and (19) are now replaced by the 
following conditions: 

- K  
2 a  

f( 1, e) = - COS e exp( CY COS e)  (24) 

Now, we shall find the Green function for equation ( 5 )  under the following boundary 

(27) 

(28) 

(29) 

conditions: 

G(X; 1, e' )  = o 
G(x; P ' ,  P )  = 0 

G(x; p ' ,  y )  = 0. 

Figure 1. 
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For this purpose, we expand the required functions into a series only with sines by 
the following rules: 

a. 

h ( B ' ) =  c b, sin v , ( e ' - p )  
, = I  

b, = L  [ ' h ( e f )  sin v , ( e f - p )  de'  (31) 
80 B 

where v, = ( r / e o ) n .  Hence the 8 delta function can be written as 

and the Green function G(x, x') can be written as 

Substituting (32) and (33) in ( 5 )  we obtain an equation for gn(p, p ' ) :  

Solution of (34) can be written as 

gn (P, P ') = A J , ,  ( ap< )[ K , ,  ( a ~ >  1 + BnIu,# ( a ~ >  11 (35) 
where B, = - Kv,z (a) /Zun(a) .  By the same method given in the last section, we find 
the constant 

A, = 412. (36) 
The required Green function is therefore 

812 cE 

60 n = l  
G(x, x') =- sin v , ( O - p )  sin v , ( e ' - p ) I , ( a p < ) [ K , , ( a p , ) +  B , I v , , ( a p , ) l .  (37) 

Now we proceed to calculate aG/an' on the boundary surface. On arc B, similar to 
the method of obtaining (16) from (13), from (37) we obtain 

On line OB, from (37) we obtain 

On line OA, a(aG/an') 
by unity, i.e. 

812 =-- 2 
p'Oo n=I 

has the same form as on line OB except that ( - l ) n  is replaced 

v, sin vn ( e  - p ) I y , ,  (ap<)[K, , , (ap,)  + B,I,,(ap,)I. (40) 
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Now we can calculate f ( p ,  e )  fro-m (17 ) .  I n  this case the boundary surface S is 
composed of three parts, i.e. arc AB, line OA, line OB, and the surface integral in  (17 )  
is composed of three integrals, represented by D( AB), D(OA), D(OB), respectively. 
Substituting (24)  and (38 )  in (17 ) ,  we obtain 

where W,( a,  P )  represents the following integral: 

Substituting (25) and (40 )  in (17) ,  we obtain 

D ( O A ) =  ( -COSP ) v,, sin v , , ( e - p )  
2 a  eo 

vz(P, 4 )  = e x p ( w ’  cos cCI)K”,,(QP’) dp’ 

Substitute (26 )  and (39)  in (17 ) ,  we obtain 

87r 
60 

(-1)“- v, sin v “ ( 0 - p )  

x [ B J , , , ( a p ) ~ , ( a ,  P ) + K ” , , ( a P ) L I : : ( P , P ) + I ” , , ( a p ) v : : ( p , p ) l  

- - cosy  C ( - 1 ) ” ~ ~  sin v , ( e - p )  

x [W,, ( a p )  N n ( %  Y) + 

X 2 
00 , , = I  

u : ( P ,  Y 1 + I”,, ( D P )  C ( P ,  Y 11). (48) 

g ( p ,  0 )  has the same form asf (p ,  e ) ,  except that there is no negative sign in the front 
of the equation and W,,, N,,, U,,, V,, are replaced by w,,, fin, U,,, v,, where the last 
four symbols differ from the first four only in adding a negative sign in the exponential 
arguments, since the boundary condition for g differs from that for f only in  the sign 
of a and a G / a n ‘  is independent of the sign of a (as in ( 3 7 )  a may be replaced by la/  
since only a 2  appears in (34)). 
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4. Conclusions 

The application of the Green function methods to M H D  pipe flow enable explicit 
analytic solutions to be obtained for any sector cross section. These solutions for 
special geometries are also particularly useful in checking out computer codes intended 
for more complex geometries. 
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